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Remote sensing is a valuable tool for monitoring the impact of landscape-scale distur-
bances on ecosystem structure and function. We explore the impact of the ongoing insect
outbreaks (Dendroctonus ponderosae, D. rufipennis, and Ips spp.) on southern Rocky
Mountain forests, with the goal of assessing the sensitivity of leaf area index (LAI)
and phenology metrics to different disturbance severities. Specifically, we investigate
the influence of the outbreaks on two important ecosystem metrics, LAI, and phenology
(e.g. green-up date, green-up speed, amplitude, etc.). Both were assessed via MODIS:
1000 m LAI (MOD15A2) and 250 m NDVI (MYD13Q1) for the phenology assess-
ment. Trends (2002–2010) in phenology metrics and LAI were compared to different
cumulative severities and timing of tree mortality, as determined from aerial surveys.
Trends in phenology were significantly correlated with disturbance severity but with
very low predictive power. This seems likely due to yearly variations in the onset of
snow-fall and snow-melt, which dominate the phenologic signal at the regional scale of
this study. Trends in LAI were associated more strongly with both disturbance severity
and timing, with landscapes disturbed early in the observation period showing recov-
ery (e.g. a positive trend) in LAI. The LAI, which is related to various vital ecosystem
properties like water use and gas exchange, seems to be fairly resilient to even heavy
mortality. Further work determining the relative contribution of the various functional
groups (trees, shrubs, and grasses) to the LAI recovery is needed to better understand the
implications of this large-scale, pervasive disturbance on forest structure and function.

1. Introduction

Fires, insect outbreaks, and other landscape disturbances often cover a large spatial and
temporal extent and are key to ecosystem structure and functioning. The unique view
afforded by remote-sensing instruments allows for a comprehensive perspective on these
phenomena. The current insect outbreaks (mainly mountain pine beetle (Dendroctonus
ponderosae), spruce beetle (D. rufipennis), and engraver beetle (Ips spp.)) affecting conifers
throughout the southern Rocky Mountains are a case in point. The historic scale and sever-
ity of the current outbreaks (ca. 1997 to present) have raised concerns regarding the future
of the forests, ecosystem services, and various processes dependent on those forests (e.g.
Kurz et al. 2008; Pugh and Gordon, Forthcoming). In this research, we explore the regional
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impact of the current mortality on trends in forest phenology and LAI, two measures of
forest health with direct implications for a number of ecosystem processes.

The southern Rocky Mountains are covered with extensive forests dominated by sev-
eral species of conifer, including lodgepole pine (Pinus contorta), ponderosa pine (P.
ponderosa), Engelmann spruce (Picea engelmannii), and subalpine fir (Abies lasiocarpa).
While insect outbreaks are not uncommon and in fact are an integral part of the distur-
bance regime (Romme, Knight, and Yavitt 1986; Raffa et al. 2008; Safranyik and Carroll
2006), the current outbreaks are unprecedented in known historical terms, both in severity
and extent (Raffa et al. 2008). They have received substantial attention because the region
is dependent on various forest ecosystem services for factors such as scenic value, water
supplies, timber, and recreation.

Forest insect epidemics are major landscape-scale disturbances (Raffa et al. 2008); how-
ever, rather than a sudden, discrete disturbance like a wildfire, insect outbreaks occur over a
span of years. The current outbreaks have been occurring over the last decade, with cumu-
lative mortality levels reaching extremely high values in some locations. It is a gradual
process. In the case of the mountain pine beetle, D. ponderosae, which caused over half
of the observed mortality (see Section 2), beetle emergence in mid- to late-summer is
followed by dispersal, infestation of new host trees, and egg laying. The next generation
emerges the following summer and repeats the cycle. Infested trees typically remain green
for 1 year, and then the needles gradually turn red (‘red stage’) and fall off (‘grey stage’),
usually within 4 years. Beetle flight is spatially limited, so the current outbreaks repre-
sent the synchrony of many local-scale infestations, rather than a single, runaway outbreak.
This has important implications for remote-sensing studies. Rather than discrete changes
in reflectance, longer time periods are needed to see major changes as the cumulative effect
grows. However, growth by understory plants, young trees, and other plants may partially
or completely compensate, masking the signal of dead trees.

NASA’s two Moderate Resolution Imaging Spectrometer (MODIS) instruments,
launched in 1999 on the Terra platform and in 2002 on the Aqua platform, are well suited
for dynamic disturbance modelling. MODIS represents a compromise between high tempo-
ral resolution and moderate spatial resolution (250–1000 m), with spectral bands chosen for
vegetation health monitoring (among other things). MODIS has been successfully used to
map the occurrence of insect disturbance (Eklundh, Johansson, and Solberg 2009). Forest
ecosystem functioning is related to leaf area index (LAI, measured as leaf area per area
ground, or m2 m−1). LAI is tied to a number of important processes, such as evapotranspi-
ration rates and canopy transmissivity, and is an integral part of many ecosystem models.
Changes and differences in LAI are therefore vital indicators of the changes in a number of
processes. For example, Coops et al. (2009) found that susceptibility to mountain pine bee-
tle mortality could be predicted by remotely sensed LAI estimates (% of maximum LAI).
Disturbances, such as insect-caused mortality, generally reduce LAI, at least temporarily,
and the ability of MODIS to monitor LAI over large areas at high temporal resolution
is particularly useful in monitoring the effects of and recovery from disturbances (Zheng
and Moskal 2009). MODISLAI (MOD15A2) estimates are continuously refined, and the
current collection (col. 5) has a strong validation history (e.g. Sea et al. 2011; McColl
et al. 2011); expected uncertainty (RMSE) across all cover types except deciduous forests
is 0.5 m2 m−2 (MODIS Land Validation project 2011; see website for supporting studies:
http://landval.gsfc.nasa.gov/).

The high temporal resolution of MODIS also allows for time-integrated analyses of
forest health, as opposed to single snapshots (e.g. single-scene LAI). One class of these
analyses is phenologically based, such as analysis of the amplitude of seasonal fluctuations

https://cuvpn.colorado.edu/,DanaInfo=landval.gsfc.nasa.gov+
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in a selected reflectance value, often NDVI (e.g. van Leeuwen 2008). NDVI, a common veg-
etation index associated with healthy green vegetation, should be reduced by tree mortality.
Yearly patterns of NDVI (the phenology) can therefore be used to diagnose disturbance
events; for example, the ForWarn online data product attempts to map the disturbances by
comparing historical and current NDVI values (forwarn.forestthreats.org). Example phe-
nological metrics include the rate of green-up and brown-down, the length of the season,
and more (Figure 1, left). These metrics have the advantage of integrating the informa-
tion recorded across an entire year, providing unique data that single-image data cannot.
They also represent fundamentally important ecological processes, both for natural sys-
tems and ecosystem services. All, for instance, are correlated with various aspects of forest
growth and therefore carbon sequestration (Leinonen and Kramer 2002); other studies
have tied trends in phenological variables to various disturbance effects (van Leeuwen
2008; Eklundh, Johansson, and Solberg 2009; van Leeuwen et al. 2010). Changes in
these phenological attributes that can be attributed to disturbance can therefore be used
as potential indicators of changes in their governing processes and tied to potential alter-
ations related to ecosystem services. Tree mortality may affect these metrics in various
ways, by increasing snow infiltration into the understory, decreasing canopy intercep-
tion, or increasing the rate of green-up in the spring through exposure of herbaceous
understory.

The purpose of this study was to determine how insect outbreaks affect LAI and phenol-
ogy over a decadal timescale. We used a trend analysis to look at the increasing mortality
due to insects (cumulative, from 2002 to 2010) and the trajectory in the MODIS met-
rics at the same points over the same time period, along with climatic variables (trends in
mean precipitation and max. temperature). Trend analyses are useful in overcoming noise
from stochastic yearly fluctuations due to weather, timing, sun angle, and clouds (which
can affect pixel quality) and better reflect the long-term dynamics of forests (Kennedy,
Yang, and Cohen 2010); the current timeline of the MODIS instruments allows for decadal
trends to be investigated. Trend analyses have proven very useful in other forest health and
dynamics contexts (e.g. Verbesselt et al. 2009; Kennedy, Yang, and Cohen 2010).

Figure 1. Left: basic phenological metrics. Each metric is computed from 23 measurements/year,
weighted by quality. Dots show simulated measurements, the dashed line is the best-fit yearly curve
(see Section 2). From the dashed line, several metrics are computed. A: rate of green-up (left deriva-
tive). B: rate of green-down (right derivative). C: area under the curve, or the cumulative effect of
vegetation on NDVI. D: seasonal amplitude. E: length of season. F: season start date (defined as 90%
of maximum). G: season end date (defined as 90% of maximum). Right: hypothetical examples of
trend analysis, limited to four years. (i) Decreasing amplitude and max. NDVI without change in any
other metrics. (ii) Increasing green-up rate and a decrease in length of season with no change in the
other metrics. Note that these are not necessarily realistic, but rather simplified examples of potential
changes; in reality all of the metrics would likely be changing concurrently.
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Specifically, focusing at the regional scale of the Colorado Rocky Mountains, we asked:

(1) Are MODISLAI estimates reliable when compared to ground estimates in insect-
killed forests?

(2) How are trends in summer LAI (maximum and mean) related to cumulative
mortality?

(3) How are trends in phenology metrics related to cumulative tree mortality?
(4) Are observed LAI trends dependent on the timing of mortality and are there any

indications of recovering LAI?

It is also important to consider the practical application of these products, and their useful-
ness to the end user (e.g. land managers, using the products with minimal post-processing).
For example, the MODIS LAI product may be used as an input to regional hydrology
models. Therefore their sensitivity to large-scale disturbances, such as the current insect
outbreaks in the study area, is an important consideration. So, we discuss these results
from that perspective as well.

2. Methods

2.1. Initial Processing and Study Area

The study area was identified as the majority of the Colorado Rocky Mountains, which
have seen extensive mortality over the last decade driven by widespread insect outbreaks.
The complete time series of MODIS NDVI (∼250 m resolution, 16 day temporal res-
olution MOD13Q1, ver. 5) and LAI (∼1000 m resolution, 8 day temporal resolution,
MCD15A2, col. 5) maps were obtained through the online Data Pool at the NASA
Land Processes Distributed Active Archive Center (LPDAAC). Maps were mosaicked
and reprojected through the MODIS Reprojection Tool (https://lpdaac.usgs.gov/tools/
modis_reprojection_tool). The final extent of the analysis area was from ∼37◦ N 108◦
W (lower left; UTM 172897 4150354 zone 13, NAD83) to ∼41◦ N 105◦ W (upper right;
UTM 517897 4545354), covering approximately 136,000 km2 (Figure 2).

Because this covers a large area, the climate varies, but it all has a continental
climate with warm summers and cold winters. The precipitation is primarily winter snow-
dominated, although summer thunderstorms and monsoons can provide large amounts of
moisture. The coniferous forest of the region, where this study is focused, is composed pri-
marily of lodgepole pine (P. contorta), Engelmann spruce (P. engelmannii), and subalpine
fir (A. lasiocarpa), with ponderosa pine (P. ponderosae) at the lower elevations. Limber pine
(P. flexilis) can be locally common as well, especially in the northern regions. Most of the
recorded mortality has been in lodgepole pine and spruce–fir forests (see Section 2.3). LAI
in undisturbed stands varies between species and stand densities. Kaufmann, Edminster,
and Troendle (1982) describe the relationship between stand basal area and LAI. They
estimate that for a lodgepole pine stand at 70 m2 ha−1 (their approximate maximum for
the southern Rocky Mountains), the projected LAI values would be approximately 2.3.
A spruce–fir forest at the same basal area would be approximately 6.7. Actual density val-
ues are often lower, and Kueppers and Harte (2005) estimated LAI values as 2.14 to 4.8 in a
spruce–fir forest (approx. 20–50 m2 ha−1 basal area) in the Fossil Ridge Wilderness, which
is near the centre of the study area (Figure 1). It should be noted that because our analysis
follows a single point through time, it is not the absolute magnitude of LAI that is being
investigated, but rather the relative increase or decrease.

https://cuvpn.colorado.edu/tools/,DanaInfo=lpdaac.usgs.gov,SSL+modis_reprojection_tool
https://cuvpn.colorado.edu/tools/,DanaInfo=lpdaac.usgs.gov,SSL+modis_reprojection_tool
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Figure 2. Examples of input and output variables and the entire spatial extent of the study area
(inset, lower right). Top left: aerial survey damage maps, showing where at least one instance of tree
mortality was observed for study years. Top right: input DEM and final sampling points (n = 1458).
Bottom left: mean LAI trend over the entire study extent; sharply negative trends are seen in areas with
recent beetle kill. Units are in terms of the mean change in LAI/year. Bottom right: length of season
(in 16 day increments to match the MODIS product) trend over entire study extent. Seasonal trends
are highly variable across the study area, likely because of yearly changes in snow onset/melt. Inset
shows study coverage area (red). Coordinates in text. Maps of summer LAI mean and max. trends,
corresponding r2 and significance values, and total tree mortality can be found in the Appendix.

2.2. Ground data

While MODIS level 4 products are highly validated and continuously being improved, there
is still a substantial variation in their quality and, thus, products should always be tested to
ensure they are representative of local conditions (De Kauwe et al. 2011). MODISLAI
(col. 5) values were compared to 24 field-based plots where effective LAI (LAI

◦
) was esti-

mated in 2009 and 2010. Plots were divided into mortality classes (living, red stage, and
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grey stage) and the non-parametric Kruskal–Wallis test was used to compare MODISLAI
and ground LAI

◦
estimates for each class. These plots spanned a range of basal areas

(green, 41.1 (9.3) m2 ha−1 (mean (standard deviation)); red, 34.0 (10.6) m2 ha−1; grey,
38.7 (11.4) m2 ha−1) and infestation severities (green < 35% mortality, red/grey > 50%).
Twelve hemispherical photographs per plot were taken at 1 m height and assessed for LAI

◦
;

the average of these 12 measurements was used (see Pugh and Small 2011 for general meth-
ods). Two methods of hemispherical estimation were used (0–60o vs. 0–75o view angle) for
comparison. Because of the different scales (∼50 × 50 m field plots vs. 1000 × 1000 m
pixels), the average difference of the paired observations was also recorded. This allows
us to assess whether the difference in observation methods is within the expected 0.5 LAI
uncertainty of a MODIS pixel. MODISLAI values were taken from the compositing period
around Julian date 241 (29 August, both years), which was the latest date that was con-
sistently snow free (personal observation); ground dates were taken from Julian date 305
(1 November, both years). There was no snow present in tree canopies when ground
measurements were collected, although some snow may have been on the ground.

2.3. Climate and insect data sets

Two climate variables were considered – maximum annual temperature and mean annual
precipitation, both taken from ∼4 km resolution PRISM data sets (Daly, Taylor, and Gibson
1997; available at http://prism.oregonstate.edu). Annual means were chosen because they
correspond to the integrated annual perspective afforded by the phenology variables.
Elevation data were obtained from the USGSGMTED2010 data set (Danielson and Gesch
2011). These variables were used to limit the influence of topography and climate on
observed trends.

Tree mortality data was acquired from the USFS aerial surveys, which are conducted
annually across the southern Rocky Mountains. Briefly, trained observers sketch-map mor-
tality from a low-altitude aeroplane (Ciesla 2006). Results are broadly accurate, and while
accuracy at any given point may be relatively low (61.1% on a point-basis), the general
occurrence trends across a region are more accurate (78.6% accurate with 500 m spatial
error tolerance, Johnson and Ross 2006). For an analysis of the scale of this study, this data
set is appropriate (Johnson and Ross 2006), but it should be noted that this limits the study
area to places with concurrent areal data. The observed density of trees (dead trees/ha)
killed in the previous year was reprojected to a 250 m grid (nearest neighbour resampling)
and used in the analysis. Cumulative annual mortality maps for the beginning of the obser-
vation period (2002–2004), the end of the observation period (2007–2010), and the entire
observation period (2002–2010) were made by simple addition of the observed new mor-
tality each year during that span (Figure 3). Because of the yearly additive nature of insect
disturbances, cumulative maps were deemed more appropriate than annual. We did not
distinguish between damage-causing agents in the analysis, as we are primarily focused on
disturbance drivers of the trends in LAI, rather than the specific cause of those disturbances.
So, the mortality maps reflect all mortality recorded, and potentially are confounded with
competition or single-tree blowdown events. However, the damage agents were predom-
inantly identified as mountain pine beetle, D. ponderosae (56% of observed points), and
the spruce beetle, D. rufipennis (10%). Twenty-seven per cent of the observed mortality
was classified as non-specific/unknown insect or disease in spruce–fir forests. These data
are provided as mapped polygons, and were resampled to 250 m raster resolution (MODIS
resolution) using the nearest neighbour assignment. The cumulative mortality map can be
found in the Appendix.

https://cuvpn.colorado.edu/,DanaInfo=prism.oregonstate.edu+
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Figure 3. Timing and intensity of observed mortality from USFS aerial survey. Total cumulative
mortality is on the left; the early period (2002–2004) and recent (2007–2010) are the maps used in
the analyses. Mortality is in TPH. Scales are held constant to aid in visual comparison, although not
all classes are on each map. Survey polygons reprojected to 250 m grid. Area shown is the same as
Figure 2.

2.4. Point selection

Ten thousand random points were assigned across the region in ArcMap, and correspond-
ing variables were extracted at each point using the nearest neighbour assignment. Analysis
was limited to points that saw at least one occurrence of insect-related mortality (‘minimum
severity criterion’ = 1) during the observation period. This ensures that a lack of observa-
tion by the aerial surveys would not be responsible for inflated zero-mortality values. This
stipulation left 1458 data points, all within subalpine forests, ranging from 1877 to 3749 m
elevation, and a minimum spacing of 1002 m between points (median = 134,292 m).
Although low levels of long-distance dispersal are possible, most mountain pine beetle
dispersal is limited to ∼30 m year−1 (Safranyik and Carrol 2006), and so the rate of yearly
spread of any specific infestation is relatively short. Disturbances are, by their very nature,
spatially autocorrelated (Wiens and Parker 1995). Gradient analyses are a way to mini-
mize the potential confounding effects of that spatial autocorrelation (Wiens and Parker
1995; Parker and Wiens 2005), and the 1 km spacing was intended to isolate points from
each other in terms of single-year beetle dispersal distances. This distance also spaces each
point into a different LAI and NDVI pixel.

2.5. Phenology analysis

TIMESAT was used for the phenological analysis (Jonsson and Eklundh 2004; Eklundh
and Jonsson 2010) and seven metrics selected for analyses (Table 2). A double logistic
model was chosen as the base model, as it is well suited to smoothing out anomalous
points and works well in highly seasonal environments, where there is a discrete start and
end of the growing season (snow-melt and snow-fall, respectively; Eklundh and Jonsson
2010). The fitting used three envelope iterations with adaptation strength of 2 and forced
a minimum of 0.2. Spikes were removed via a median filter. Low-quality pixels (MODIS
Quality data) were weighted at 0.1. Season start/stop times were defined as when NDVI
equals 75% of the maximum amplitude for the given year; this value was chosen to avoid
potential influence of spring/fall snowstorms. After processing, any pixel which reported
an error for a given year (e.g. no season was found at that pixel for that year, which was
rare) was replaced with the mean of 1000 randomly sampled values from the same year (a
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conservative correction that tends to reduce any trend). These pixels were primarily located
in urban areas and were thus excluded from the analysis by the minimum-severity criterion
from Section 2.4.

2.6. Trend calculation

The decadal trends for mean annual precipitation, maximum annual temperature, mean and
maximum LAI, and the phenology metrics were calculated by taking the value at each
pixel for each year (in the case of LAI, the max. and mean observed for the snow-free
period were assigned to a given pixel for each year) and computing a simple linear regres-
sion. Points were extracted in ArcMap (ESRI 2011); all further analyses were done in R
(R Development Core Team 2011). The slope was taken as the trend (Figure 1, right).
To eliminate the potential confounding influence of trends in precipitation, temperature,
and topography on observed trends, LAI/phenology trends were first run through a lin-
ear model with those variables, and the residuals kept. This is one way to account for the
spurious influences of those variables (‘statistical partialling’).

LAI residuals (which had the climate/topography influence removed) were then
regressed against the cumulative tree mortality (see Section 2.3) using a polynomial func-
tion, residuals = b + mx + mx2, where x is cumulative mortality (log10 transformed for
normality). Phenology residuals were run with an exponential function as well, but a stan-
dard linear regression against the residuals was found to fit the data more parsimoniously,
and so the linear function results were reported.

3. Results

3.1. Is MODISLAI comparable to ground-measured effective LAI estimates?

The average difference between the observed and MODISLAI paired points ranged from
0.15 to 0.22 (Table 1), well within the expected 0.5 error rate from the MODIS platform.
The significance of the differences between the two estimates depended on the mortality
stage, with living and red-stage plots showing no difference, but grey-stage plots show-
ing significantly higher LAI estimates from the MODIS product (Table 1, Figure 4). The
ground-observed LAI◦ had a fairly small range (0.72 and 0.70 for 60◦ and 75◦ meth-
ods, respectively) relative to the variance expected in a MODIS pixel. Nonetheless, the
MODISLAI estimates were generally close to the observed LAI◦ as indicated by the small
average difference between the two estimates for the green and red stages.

Table 1. Comparison between ground-based LAI values and MODIS estimates (n = 24). There was
no significant difference between the green- and red-stage LAI estimates, and the mean differences
were small and within the expected variance of the instrument (0.5). Significant differences is shown
in bold. Range is shown in parentheses.

Kruskal–Wallis p-value

Ground
LAI◦

Observed range
ground LAI◦

Observed range
MODIS

Mean difference
MODIS – ground Alive

Red
stage

Grey
stage

60◦ 0.91−1.63 (0.72) 1.2−2.2 (1.0) 0.15 0.67 0.42 0.02
75◦ 0.84−1.56 (0.70) 1.2−2.2 (1.0) 0.22 0.56 0.74 0.006
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Figure 4. Comparison between ground-estimated LAI◦ (60◦ and 75◦ methods) and MODISLAI.
Results varied by mortality stage: For live plots (n = 8) and red-stage tree mortality plots (n = 6),
there was no significant difference. For grey-stage plots (n = 10), MODISLAI was significantly
higher.

3.2. How are trends in summer LAI related to cumulative mortality?

Significant relationships (p < 0.05) existed for both mean and maximum summer LAI
values with total cumulative mortality (2002–2010), although predictive power was low.
After the statistical partialling procedure, significant relationships remained for cumula-
tive tree mortality and both residual mean LAI trends (p ≈ 0, r2 = 0.11) and residual
max. LAI trends (p ≈ 0, r2 = 0.07), indicating that the relationships are not simply due to
climate/topography (Figure 5). A multiple regression containing all terms (climate, topog-
raphy, and mortality) had higher predictive power (mean LAI: p ≈ 0, r2 = 0.23; max.
LAI: p ≈ 0, r2 = 0.16), with all terms except the first-order cumulative observed mortality
and precipitation trends being significant. Summer mean and max. LAI trend maps and
corresponding r2 and significance maps are found in the Appendix.

3.3. How are trends in phenology metrics related to mortality?

The initial regression against climate and topography indicated that trends in these vari-
ables were influencing, to a small extent, trends in the observed phenology (Table 2). The
residual analysis against the mortality data was generally significant but with very low r2

values (Table 2). Because the length of the season is highly variable due to high year-to-
year variability in snow onset/melt dates, we also analysed correlations between the length
of the season and the phenology variables (on a yearly basis) in an attempt to determine
to what extent variability in season length may overshadow the influence of insect mortal-
ities. These correlations were significantly higher than those with the tree mortality data
(Table 3), indicating that much year-to-year variability in phenology metrics, which would
reduce the significance of any trend in those metrics, is driven by the changes in season
length.



7258 B. Buma et al.

Figure 5. Plot of residual LAI (from linear model: LAI trends ∼ elevation + precipitation
trends + max. temperature trends) versus cumulative tree mortality. Results show similar patterns
between max. and mean LAI values, both decreasing. Low levels of mortality (also associated with
early period mortality, see Figure 5) are associated with positive or neutral LAI trends, whereas high
levels of mortality are associated mainly with negative LAI trends. The trends are both significant
(mean LAI: p ≈ 0, r2 = 0.11/max. LAI: p ≈ 0, r2 = 0.07).

Table 2. Relationship between trends in phenological metrics and climatic variable trends, and
residual correlation with tree mortality (trees killed/ha (TPH)). Metric trends were first regressed
against elevation and climate trends, then the residuals regressed against the log10 transformed
mortality numbers (n = 1458). NA indicates no significant relationship.

Climate/elevation regression

Trend residuals
∼ Cumulative

TPH
2002–2010

Phenologic
metric p r2 Variables p r2

Large integral 0.004 0.007 Elevation, precipitation trend 0 0.01
Length of season 0.002 0.008 Precipitation trend, temperature trend 0.009 0.004
Green-up rate 0.61 0 NA 0.03 0.003
End of season 0.06 0.002 Precipitation trend 0.06 0.002
Amplitude 0.01 0.005 Temperature trend 0.41 0
Green-down rate 0 0.02 Elevation 0.07 0
Start of season 0.01 0.006 Temperature trend 0.07 0
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Table 3. Correlations between the length of the season and various phenologic variables for all
of the investigated years at sample points (n = 1458). Season length is largely driven by snow-
melt/snow-fall, which are both highly variable (see text). Start- and end-of-season times are the
strongest, although all variables show significant relationships for most years. Correlations between
length and the other phenology variables are generally substantially higher than between insect
infestation severity and the phenology variables.

Start
Green-up

rate Amplitude
Large

integral
Green-down

rate End

Year r2 p r2 p r2 p r2 p r2 p r2 p

2000 0.10 0.00 0.09 0.00 0.07 0.00 0.07 0.00 0.02 0.00 0.55 0.00
2001 0.17 0.00 0.01 0.01 0.03 0.00 0.12 0.00 0.15 0.00 0.51 0.00
2002 0.25 0.00 0.00 0.12 0.01 0.00 0.08 0.00 0.04 0.00 0.29 0.00
2003 0.18 0.00 0.04 0.00 0.07 0.00 0.08 0.00 0.01 0.00 0.44 0.00
2004 0.35 0.00 0.02 0.00 0.05 0.00 0.06 0.00 0.02 0.00 0.49 0.00
2005 0.22 0.00 0.03 0.00 0.04 0.00 0.13 0.00 0.00 0.03 0.43 0.00
2006 0.20 0.00 0.08 0.00 0.12 0.00 0.13 0.00 0.02 0.00 0.41 0.00
2007 0.51 0.00 0.09 0.00 0.15 0.00 0.10 0.00 0.07 0.00 0.49 0.00
2008 0.20 0.00 0.10 0.00 0.11 0.00 0.14 0.00 0.00 0.04 0.31 0.00
2009 0.17 0.00 0.08 0.00 0.11 0.00 0.15 0.00 0.03 0.00 0.52 0.00
2010 0.26 0.00 0.09 0.00 0.09 0.00 0.10 0.00 0.02 0.00 0.41 0.00

3.4. Are the observed trends dependent on the timing of mortality, and is there any
indication of recovery?

It seems reasonable to expect that the timing of mortality would have an influence
on observed trends. Recent mortality was subtracted from early-period mortality (see
Section 2.3 for details), and the result gives a sense of timing: Negative results indicate areas
dominated by late mortality, positive results indicate areas dominated by early mortality,
and near-zero results indicate either low overall mortality or evenly spread mortality. Many
areas saw substantially more mortality in the beginning of the decade, although the out-
breaks have predominantly been in the latter half (inset histogram, Figure 5). Furthermore,
if the cumulative mortality was dominated by deaths relatively early in the observation
period, the observed trends in LAI were mainly neutral or even positive; if the converse,
the observed trend was mainly negative (Figure 5). To investigate this relationship, a lin-
ear regression was run between the differenced values (inset histogram, Figure 6) and the
mean and max. LAI values. Results were significant (mean LAI: p ≈ 0, r2 = 0.09; max.
LAI: p ≈ 0, r2 = 0.08); however, predictive power was very low. This suggests that relative
difference in the timing of mortality will contribute to, but does not drive, the decadal trend
of this study (Figure 7). These trends are still significant even when the minimum severity
criterion is increased to at least 10 trees killed/ha (TPH), and are also significant for max.
LAI at 15 trees killed/ha. Due to the even lower correlations between phenology trends and
insects, an analysis of mortality timing was not pursued for those metrics.

4. Discussion

We found that trends in phenological metrics were relatively insensitive to observed mortal-
ity. In contrast, both summer mean and max. LAI were significantly influenced by observed
mortality, even after controlling for elevation and trends in precipitation and temperature.
Predictive power for the latter relationships was low, but this may be a function of the short
period for available MODIS data.
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Figure 6. Effect of timing of tree mortality on observed mean and max. summer LAI trends
(n = 1458). Cumulative mortality (trees/ha) from 2002 to 2004 minus cumulative mortality
from 2007 to 2010 resulted in the distribution observed in the inset histogram: Areas where
2007–2010 mortality dominated are in the negative portion of the distribution, areas where the mor-
tality was distributed more or less evenly are around zero, and areas dominated by early kill are in the
positive section. A clear relationship between the timing of mortality and the magnitude and direction
of the observed trend can be seen, with early-mortality areas being mainly low magnitude/positive.
Late-mortality areas are mainly negative.

4.1. MODIS versus ground estimates of LAI

Ground LAI
◦

and MODISLAI values were comparable, although the significance depended
upon the stage of mortality and this indicates a shift in the LAI that MODIS is captur-
ing – from reflecting LAI

◦
at the green stage to the understory component in the later

stages. In the green stage, in these forests, MODISLAI appears to be reflecting LAI
◦
.

The significantly higher LAI estimates in grey-stage plots could correspond to increased
opening of the canopy due to a loss of needles, allowing for a stronger influence of the
understory on MODIS estimates. When the canopy is fuller, that influence would be less,
and the observed differences less as well (Figure 4). Other studies have also seen differ-
ences between in situ or higher-resolution satellite modelling and MODISLAI estimates
(e.g. De Kauwe et al. 2011 with Landsat, Jensen et al. 2011 with LIDAR, McColl et al.
2011 with LiCOR). Broadly speaking, there appears to be a convergence of studies show-
ing under-prediction of LAI at high values (e.g. >4) and over-prediction at low values
(e.g. <0.75), with good accuracy between them. This study falls into that range (∼1–3).
The ground values in this study did not include the understory, or consider branch clumping
or woody material, which are considered in the MODIS algorithm. We are unaware of any
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Figure 7. Cumulative mortality difference in relation to mean and max. summer LAI values. Trends
are significant for both, with 95% confidence interval shown (mean LAI: p ≈ 0, r2 = 0.09/max. LAI:
p ≈ 0, r2 = 0.08). Minimum severity shown is 1 tree/ha (2002–2010).

clumping factor studies in insect-killed plots. Inclusion of the understory or a clumping fac-
tor would increase the ground-truthed LAI estimates, although removing the woody plant
component, which we were unable to do with the black/white hemispherical photographs,
would decrease them. The grey-stage effective LAI values indicate that a substantial
portion of the ground estimates may be non-photosynthetic, woody material, increas-
ing the value of remote sensing-based estimates of LAI for modelling studies in these
environments.

The late-season MODIS comparison with the ground estimates was an attempt to
get as close to synchronous observations as possible while avoiding snow, excess mix-
ing with understory (although this appears only partially successful), and isolating LAI
contribution from the coniferous component. In addition, the inevitable pixel mixing with
deciduous trees (primarily Quaking aspen, Populus tremuloides), water bodies, understory,
and other cover types within the 1 km pixel are also responsible for some of the vari-
ation. Nonetheless, the increased LAI estimated by MODIS in grey-stage plots captures
understory growth and recovery of LAI, suggesting that ground-based methods focused on
overstory LAI will inaccurately assess the early stages of forest recovery.

4.2. LAI trends and timing

Both mean summer and max. summer LAI trends varied significantly with the level of
insect infestation, even after taking the conservative step of removing the influence of



7262 B. Buma et al.

concurrent trends in precipitation and temperature and the influence of elevation. This
is not unexpected, especially given the nature of the insects, whose effects result in tree
mortality and the dropping of dead needles. Overall, the insect infestation, which at its core
is a tree-scale phenomena (although it spreads at the landscape level), is represented in the
much-larger scale LAI measurements (1 km) which include, in many cases, a substantial
amount of cover-type mixing inside a given pixel. While unmixing techniques and other
refinements would no doubt improve the results, it is reassuring to know that even ‘off-
the-shelf’ usage of the MODISLAI product reflects the dynamics of an insect disturbance
occurring at a variety of infestation intensities.

The relationship between the timing of outbreaks (early decade or late decade) and the
direction and magnitude of the LAI trend is also interesting (Figure 6). It appears that areas
which experienced peak disturbance in the early parts of the decades are already recover-
ing in terms of LAI, with many showing positive trends; it is unknown whether this is due
to understory seedling release, an increase in herbaceous or shrub cover, or other factors.
However, results of the ground versus MODIS comparison hint that the understory is play-
ing a major role (Figure 3). Further work should be done in this area. Locations which have
recently experienced beetle kill (red stage) exhibit lower LAI values, as expected. But we
should consider an alternative hypothesis: This relationship could also indicate that areas of
declining LAI due to some other factor prior to infestation were more susceptible to attack,
thereby leading to the temporal pattern observed (declining LAI and late-decadal attack).
However, research by Mitchell, Waring, and Pitman (1983) and Landsat-based research by
Coops et al. (2009) show the converse that beetle mortality was more intense at higher
LAI values due to a reduction in individual tree vigour via competition (comparisons con-
ducted in thinned vs. unthinned stands). Thus, it seems likely that the observed declines
were caused by beetle mortality as opposed to the beetle mortality being driven by the
changes in LAI due to other reasons. Pugh and Gordon (2012) found a similar magnitude
of decline when comparing uninfested stands with those in an advanced state of mortality.
This observation is tempered by the fact that the early-period mortality tended to be less
severe and covered a smaller area, and so more observations are needed to truly assess
resilience, the severity of outbreaks that can occur without long-term change to the ecosys-
tem. These forests are quite resilient to insect disturbance according to Holling (1973).
Both Aoki, Romme, and Rocca (2011) and Diskin et al. (2011) have observed ample tree
recruitment in the understory with slight shifts in vegetation composition, and primary pro-
ductivity recovering rapidly from severe infestations (Romme, Knight, and Yavitt 1986).
This has implications for several fields, such as carbon (C) modelling. LAI is the interface
for carbon fixation in plants and therefore an important driver of ecosystem C exchange
and balance. In an eddy flux study in British Columbia, two stands with high mountain
pine beetle mortality remained fairly C neutral, with the earlier-attacked stand remaining
a slight C sink (Brown et al. 2010), likely due to increased uptake of C by the understory
(Bowler et al. 2012). Further integration is needed to determine other effects of switching
from primarily overstory to primarily understory leaf area, regardless of the net changes in
total LAI.

4.3. Phenology assessment and tradeoffs

In some sense, the lack of a strong relationship between phenological variables and the
ongoing insect disturbance is surprising. While the insects’ preferential damage of mature
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trees and the subsequent opening of the canopy would be expected to alter observed pheno-
logical trends, the fact that those alterations were not significant (at the 250 m pixel scale)
lends credence to the idea that phenologic trends are somewhat insensitive to disturbances
of this scale and type. Temporally, insect outbreaks are not discrete, as cumulative mor-
tality plays out over several years, allowing for understory growth and expansion which
likely offsets some of the expected changes in observed reflectance. The phenology is also
strongly driven by variable onsets in snow-fall/snow-melt (for example, the snow-free date
at the Lost Dog NRCS Snotel site in the Park Range of northern Colorado was 25 June in
2011, and 6 May in 2012, NRCS 2012), which affect a number of the phenological metrics
via changes in season length. A correlation between season length and the other phenol-
ogy variables shows much higher correlations than those seen between phenology and tree
mortality (Table 3). This is unsurprising, since phenology variables are partially a function
of the growing season length, but illustrates the difficulty of separating the effect of tree
mortality and variation in weather from year to year in the relatively short time period of
recording.

There are two potential reasons for the lack of significant trends which should be
explored further: Either the effect is very minor for any given year, or too transient to
be observed in this decadal investigation. If the effects of tree mortality on phenology
are small enough, yearly differences in weather will overshadow their effect. Studies in
areas with less year-to-year variation in snow onset may better resolve this difficulty. If the
effect is simply very transient and recovery happens within a few years, further work could
focus on variable temporal windows for the analysis to determine at what scale and severity
insects do influence observed phenology. Because the outbreaks started at different times
across the study region presented here, exploring the temporal nature of the effect would
require a smaller scale of investigation. But in sum, at this scale (large region, decadal time
period), the influence of tree mortality on phenology trends seems minor.

Certainly, this is only one type of disturbance, however common, and the phenology
was only assessed via moderate-resolution NDVI phenology and LAI. Higher-resolution
imagery (e.g. Landsat), which would contain less pixel mixing, would likely see more
significant relationships. However, the space versus time tradeoff precludes this type of
phenologic analysis due to decreased flyover opportunities in coarser-grained satellites,
and methods which build detailed phenologies from multiple years of imagery are not
suited to tracking disturbances over time (non-stationarity). Current work focuses on data
fusion techniques which may be able to address some of these tradeoffs (e.g. Hilker et al.
2009). However, one of our stated goals was assessing the utility of these MODIS products
to the end user, and so we wanted to limit this analysis to products easily obtainable and
usable by a more general audience. Other disturbances with different scales and effects
on forest structure and function (e.g. fire) may have stronger effects on phenology as
well. Catastrophic, discrete disturbances, such as wildfire, which drastically alter structure
and cause complete mortality, have stronger effects on phenology. For example, van
Leeuwen (2008) found stronger results in correlating recovery after a severe wildfire.
A study attempting to map the degree of insect defoliation in south-eastern Norway Scots
pine (Eklundh, Johansson, and Solberg 2009) was less successful, and was only able to
satisfactorily map the occurrence of mortality, not severity. While we did not test the ability
of these metrics to classify disturbed/not disturbed, the general inability to use phenology
to map continuous insect-mortality severity is shared with that study. It is certainly
possible, however, that advances in curve fitting and spatial resolution may improve
results.
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4.4. Caveats

As in all remote-sensing studies of this type, several caveats exist. First, these data are
taken from several different sources, collected for different reasons, and at different spatial
scales. In one sense, this is problematic, as mixing scales and resolutions always introduces
an error. However, the fact that significant relationships were found despite this handicap
gives some reassurance that the phenomena are robust enough to be detectable despite these
problems. We intentionally used the ‘off-the-shelf’ version of the MODIS LAI and NDVI
products, with no post-processing, to test the utility of these products to the end user. While
further processing and refinements may improve the correlations, it is also useful to assess
the utility of these products from a purely end-user perspective.

Tree mortality prior to 2002 was ignored. This was considered a minor source of error
since mortality was minimal prior to 2002. Any mortality prior to 2002 would only increase
the observed trends, so this is a conservative move. In addition, coverage of the aerial
surveys was also relatively low prior to the study period, which limits the availability of
points for analysis because a trend analysis requires continuous revisits. Second, the anal-
ysis covers an expansive area. The inclusion of precipitation and temperature trends across
the region was intended to address the fact that climate trends are likely variable across
the region, although other, unconsidered variables may also exist which are non-randomly
distributed across the study area. This is a caveat in all large-scale investigations which nec-
essarily depend on simplifying assumptions. Cover type variance (such as grass patches)
at the subpixel scale may also vary. Finally, this is a highly seasonal, subalpine environ-
ment dominated by snow coverage in the winter, and so conclusions here must be carefully
applied to other ecosystems where the MODIS signals may be more or less clear, at least
in terms of definite seasons.

5. Conclusions

In this highly seasonal, snow-affected environment, and at the regional scale, both sum-
mer mean and summer max. LAI are influenced by tree mortality, even after controlling
for elevation and concurrent trends in precipitation and temperature. However, it appears
that LAI may recover quickly from the severity seen in the early period of observation,
which comes likely from an increased contribution by the understory – this remains to be
explored. Phenological variables were insensitive to tree mortality after controlling for ele-
vation, temperature trends, and precipitation trends at this regional scale. Likely differences
in the onset of the outbreaks, influence of the understory on reflectance, and year-to-year
variability play a role in the lack of correlation at this scale. Higher temporal and spatial res-
olution climate data may be more successful at resolving phenological change. Similarly,
smaller focal areas, such as watersheds, may see stronger effects due to decreased vari-
ability in the time of attack and seasonal weather patterns. More extensive phenology
investigations, with a wider range of curve-fitting methods and response variables (e.g.
EVI), are still needed. Longer-term studies are always desired, and this study covers only
9 years. While the indication is that areas which experienced early tree mortality are on the
road to recovery, longer-term monitoring across a wider range of infestation severities is
needed. However, this study begins to shed some light on changes and trends important for
ecosystem functioning across a wide expanse of the southern Rocky Mountains.
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Appendix
Higher-resolution aerial survey maps and complete LAI trend maps
What follows are a higher-resolution aerial survey (USDA) map (Ciesla 2006; see Johnson and
Ross 2006 for accuracy information) and LAI trend maps (2002–2010). LAI data is from the
MCD15A2 data set (∼1000 m resolution, 8 day temporal resolution, col. 5). The images were
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obtained at the online Data Pool at the NASA Land Processes Distributed Active Archive Center
(LP DAAC). Maps were mosaicked and reprojected through the MODIS Reprojection Tool (https://
lpdaac.usgs.gov/tools/modis_reprojection_tool). The trend is taken as the slope of a linear regression
passing through each year at any given pixel; r2 and p-values <0.05 are also shown. Note that only
areas which experienced insect mortality were further analysed. The area covered is from ∼37◦ N
108◦ W (lower left; UTM 172897 4150354 zone 13, NAD83) to ∼41◦ N 105◦ W (upper right; UTM
517897 4545354), covering approximately 136,000 km2.

https://cuvpn.colorado.edu/tools/,DanaInfo=lpdaac.usgs.gov,SSL+modis_reprojection_tool
https://cuvpn.colorado.edu/tools/,DanaInfo=lpdaac.usgs.gov,SSL+modis_reprojection_tool
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